2024 Consumer Confidence Report for Public Water System COLEMAN COUNTY SUD

This is your water quality report for January 1 to December 31, 2024

COLEMAN COUNTY SUD provides surface water from LAKE COLEMAN (Coleman County) and LAKE BROWNWOOD (Brown County)

For more information regarding this report contact:

Name Travis Rhoads

Phone 325-625-2133

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono (325)625-2133.

Definitions and Abbreviations

Definitions and Abbreviations	The following tables contain scientific terms and measures, some of which may require explanation.
Action Level:	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Avg:	Regulatory compliance with some MCLs are based on running annual average of monthly samples.
Level 1 Assessment:	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment:	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level or MCL:	The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
Maximum Contaminant Level Goal or MCLG:	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
Maximum residual disinfectant level or MRDL:	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum residual disinfectant level goal or MRDLG:	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MFL	million fibers per liter (a measure of asbestos)
mrem:	millirems per year (a measure of radiation absorbed by the body)
na:	not applicable.
NTU	nephelometric turbidity units (a measure of turbidity)
pCi/L	picocuries per liter (a measure of radioactivity)

Definitions and Abbreviations

ppb:	micrograms per liter or parts per billion
ppm:	milligrams per liter or parts per million
ppq	parts per quadrillion, or picograms per liter (pg/L)
ppt	parts per trillion, or nanograms per liter (ng/L)
Treatment Technique or TT:	A required process intended to reduce the level of a contaminant in drinking water.

Information about your Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Information about Source Water

COLEMAN COUNTY SUD purchases water from BROOKESMITH SPECIAL UTILITY DISTRICT. BROOKESMITH SPECIAL UTILITY DISTRICT provides purchase surface water from LAKE BROWNWOOD] located in BROWN COUNTY]. COLEMAN COUNTY SUD purchases water from CITY OF COLEMAN. CITY OF COLEMAN provides purchase surface water from LAKE COLEMAN located in COLEMAN COUNTY. TCEQ completed a Source Water Susceptibility for all drinking water systems that own their sources. This report describes the susceptibility and types of constituents that may come into contact with the drinking water source based on human activities and natural conditions. The system(s) from which we purchase our water received the assessment report. For more information on source water assessments and protection efforts at our system contact CITY of COLEMAN- TOBY TERRY (3256255412.BCWID- CODY SHANNON (325-646-9356)

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2024	1.3	1.3	0.111	0	ppm	Y	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing
Lead	2024	0	15	16.9	5	ppb	Y	Corrosion of household plumbing systems; Erosion of natural deposits.

2024 Water Quality Test Results

Disinfection By-Products	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)	2024	25	12 - 34.9	No goal for the total	60	ppb	Ν	By-product of drinking water disinfection.

*The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year

Total Trihalomethanes (TTHM)	2024	64	29.8 - 116	No goal for the	80	ppb	N	By-product of drinking water disinfection.
				total				

*The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Nitrate [measured as Nitrogen]	2024	0.31	0.07 - 0.31	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.

Disinfectant Residual

A blank disinfectant residual table has been added to the CCR template, you will need to add data to the fields. Your data can be taken off the Disinfectant Level Quarterly Operating Reports (DLQOR).

Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Source in Drinking Water
	2024			4	4		ppm	Water additive used to control microbes.

Violations

Lead and Copper Rule										
The Lead and Copper Rule protects public health by minimizing lead and copper levels in drinking water, primarily by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of lead and copper containing plumbing materials.										
Violation Type	Violation Begin	Violation End	Violation Explanation							

Violations

PUBLIC EDUCATION (LCR)	12/01/2024	02/12/2025	We failed to adequately educate you regarding the health problems associated with and sources of elevated lead levels in our
		1	water system.

Nitrate [measured as Nitrogen]											
Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.											
Violation Type	Violation Begin	Violation End	Violation Explanation								
MONITORING, ROUTINE MAJOR	01/01/2024	12/31/2024	We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated.								

Public Notification Rule											
The Public Notification Rule helps to ensure that consumers will always know if there is a problem with their drinking water. These notices immediately alert consumers if there is a serious problem with their drinking water (e.g., a boil water emergency).											
Violation Type	Violation Begin	Violation End	Violation Explanation								
PUBLIC NOTICE RULE LINKED TO VIOLATION	01/19/2024	03/25/2024	We failed to adequately notify you, our drinking water consumers, about a violation of the drinking water regulations.								

Information about Source Water

TCEQ completed an assessment of your source water, and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for your water system is based on this susceptibility and previous sample data. Any detections of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system contact [Toby Terry][(325) 625-5412]

2024 Water Loss Audit Information

Time Period Covered by Audit		Estimated Gallons of Water Lost During 2023	Water Loss%	Comments and/or Explanations
January to December 2024		44,626,737	25.53%	Most of the water lost in 2024 was the result of leaks in the distribution system and flushing to maintain water quality

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	Sites over AL	Units	Violation	Likely Source of Contamination
Copper	01/31/2023	1.3	1.3	0.128	l	ppm	Ν	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing

2024 Water Quality Test Results

Disinfection By-Products	Collection Date	Highest Level Detected	Range of tncividual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorite	2024	0.77	0-0.77	0.8	1	ppm	Ν	By-product of drinking water disinfection.
Haloacetic Acids (HAAS)	2024	14	7.9-15.7	No goal for the total	60	ppb	Ν	By-product of drinking water disinfection.

"The value in the Highest Level or Average Detected column is the highest average of all HAAS sample results collected at a location over a year

03/29/2025 - TX0420001_2024_2025-03-29_09-56-24.DOC

5 of 7

- TX0420034_2024_2025-06-27_15-05-12.DOC

06/27/2025

Total Trih11Iometh11nes (TTHM)	2024	31	11.9- 52.6	No goal for the total	80	ppb	Ν	By-product of drinking water disinfection.

*The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCIG	MO.	Units	Violation	Likely Source of Contamination
Barium	2024	0.13	0.13 -0.13	2	2	ppm	Ν	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Fluoride	2024	0.2	0.23-0.23	4	4.0	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and _h1mim1m_f:u-tni,1:1,c
Nitrate [measured as Nitrogen]	2024	0.29	0.29-0.29	10	10	ppm	Ν	Runoff from fertilizer use; Leaching from septic tanks., sewage; Erosion of natural deposits.

Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Beta/photon emitten	10/24/2022	9.5	9.5-9.5	0	50	pCi/L∙	Ν	Decay of natural and man-made deposits.

"EPA considers 50 pd/L to be the level of concern for beta particles.

Disinfectant Residual

A blank disinfectant residual table has been added to the CCR template, you will need to add data to the fields. Your data can be taken off the Disinfectant Level Quarterly Operating Reports (DLQOR).

Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Source in Drinking Water
Chloramines	2024	2.54	2.35-2.,8	4	4	ppm	N	Water additive used to control microbes.

Turbidity

	Level Detected	Limit (Treatment Tark-i,,_\	Violation	Likely Source of Contamination
HI1hest single measurement	0.19 NTU	1.0NTU	Ν	Soil runoff.
Lowest monthly % meeting limit	100%	0.30NTU	Ν	Soil runoff.

Information Statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants.

Total Organic Carbon

The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set, unless a TOC violation is noted in the violations section.

UCMRS

Contaminants	Year	Average Level	Range of Levels Detected	MRL	Unit of Measure	
PFBA	2024	.0067	<mrl0067< th=""><th>.005</th><th>ppb</th><th></th></mrl0067<>	.005	ppb	

In 2024, the **City of Coleman**, sampled for a series of unregulated contaminants (29 PFAs and Lithium). Unregulated contaminants are those that don't yet have a drinking water standard set by EPA. The purpose of monitoring for these contaminants is to help EPA decide whether the contaminants should have a standard. To better understand the results listed, MRL (minimum reporting level) is the value and unit of a measure at or above which the concentration of the contaminant must be measured using the approved analytical methods. In general, below the MRL, the amount/concentration of contaminant is too little to test accurately. Of the 29 PFAs and Lithium, one of the PFAs-PFBA-and Lithium tested at or above their respective MRLs. For more information or to see all the results from UCMR5 sampling, please contact Toby Terry, (325) 625-5412.

Service Line Inventory

In accordance with the Lead and Copper Rule Revisions (LCRR), the City of Coleman has prepared a service line inventory that includes all service lines in the distribution system. This inventory is available online at the following link: A copy of the service line inventory for the City of Coleman can be obtained at Coleman City Hall, 200 W Liveoak St, Coleman, Texas. 2024

Coliform Bacteria

!'1ax.i.mum Contaminant Level Goal	Total Coliform Maximum Contaminant Level	Highest No. of Positive	Fecal Coliform or E. Coli Maximum Contaminant Level	Total No. of Positive E. Coli or Fecal Coliform Samoles	Violation	Likely Source of Contamination
D	1 positive monthly sample.	There were no TCR detections for this system in this CCR period		0	Ν	Naturally present in the environment.

Regulated Contaminants

Disinfectants and Disinfection By- Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Llkely Source of Contamination
Haloacetic Acids (HA.As)*	2024	30.6	16.1-30.6	No goal for the total	60	ppb	Ν	By-product of drinking water chlorination,. July 2016 high levels due to high organics with lake flooding. Problem corrected.

Not all sample results mayhave been used for calculating the Highest Level Detected because some results maybe part of an evaluation to determine where compliance sampling should occur in the future

	Total Trihalomethanes (TThm)*	2024	51.2	27.9-51.2	No goal for the total	80	ppb	Ν	By-product of drinking water chlorination. July 2016 high levels due to high organics with flooding. Problem corrected.
--	----------------------------------	------	------	-----------	-----------------------	----	-----	---	---

Not all sample results mayhave been used for calculating the Highest Level Detected because some results maybe part of an evaluation to determine where compliance sampling should occur in the future

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Llkely Source of Contamination
Antimony	2024	<0.0010	<0.0010	6	6	ppm	Ν	Discharge from petrole= refineries; fire retardants; ceramics; electronics; solder; test addition.
Arsenic	2024	<0.0020	<0.0020	0	10	ppm	Ν	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes.
Barium	2024	0.134	0.134-0.134	2	2	ppm	Ν	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Beryllium	2024	<0.00080	<0.00080	4	4	ppm	Ν	Discharge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and defense industries.
Cadmium	2024	<0.0010	<0.0010	5	5	ppm	N	Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; runoff from waste batteries and paints.
Chromium	2024	<0.0100	<0.0100	100	100	ppm	Ν	Dischai:ge from steel and pulp mills; Erosion of natural deposits.
Fluoride	2024	0.21	0.21-0.21	4	4.0	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum.factories.
Cyanida								

Cyanide	2024	0.06	0.06-0.06	2	2	ppm	N	Discharge from plastic and fertilizer factories. Discharge from steel/metal factories.
03/20/2025 = iX(0.420001 2024 20	$125_03_20 00_56_2$	1 DOC					9 of

- iX0420001_2024_2025-03-29_09-56-24.DOC 03/29/2025

Nitrate [measured as Nitrogen]	2024	0.18	0.18-0.18	10	10	ppm	Ν	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion.of natural deposits.
-----------------------------------	------	------	-----------	----	----	-----	---	--

Nitrate Advisory - Nitrate În drinking water at levels above 10 ppm is a health risk for infants ofless than six months of age. High nitrate levels in drinking water can cause bluebaby syndrome. Nitrate levels mayrise quickly for short periods of time because of rainfall or agricultural activity. *H* you are caring for an infant you **Should ask** advice **from** your **health** care **provider**.

Selenium	2024	<0.0030	<0.0030	50	50	ppm	N	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines.
Thallium	2024	<0.00040	<0.00040	0.5	2	ppm	Ν	Discharge from electronics, glass, and Leaching from ore-processingsites; drug factories.
Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Beta/photon emitters	2023	8.2	8.2-8.2	0	50	pCi/L	Ν	Decay of natural and man-made deposits.
Combined Radium 226/228	2017	<1.0	<1.0	0	5	pCi/L	Ν	Erosion of natural deposits.
Gross alpha excluding radon and uranium	2023	Levels lower than detect level	<3.0	<3.0	15	pCi/L	Ν	Erosion of natural deposits.
Synthetic organic contaminants including pesticides and herbicie	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
2,4,5-TP (Silvex)	2022	<0.2	<0.2	50	50	ppb	Ν	Residue of banned herbicide.
2,4-D	2022	<0.1	<0.1	70	70	ppb	Ν	Runoff from herbicide used on row crops.
Alachlor	2024	<0.2	<0.2	0	2	ppm	Ν	Runoff from herbicide used on row crops.

Atrazine	2024	<0.1	< 0.1	3	3	ppm	Ν	Runoff from herbicide used on row crops.
Benzo(a)pyrene	2024	<0.02	<0.02	0	20	ppb	Ν	Leaching from linings of water storage tanks and disttibutio.n li.nes.
Carbofuran	2022	<0.9	<0.9	40	40	ppb	Ν	Leaching of soil fumigant used on rice and alfalfa.
Chlordane	2024	<0.20	< 0.20	0	2	ppb	Ν	Residue of banned terrniticide.
Dalapon	2024	<1.0	<1.0	200	200	ppb	N	Runoff from herbicide used on rights of way.
Di (2-ethylhexyl) adipate	2024	<0.6	< 0.6	400	400	ppb	Ν	Discharge from chemical factories.
Di (2-ethylhexyl) phthalate	2024	<0.6	< 0.6	0	6	ppb	Ν	Discharge from rubber and chemical factories.
Dibromochloropropane (DBCP)	2022	<0.02	<0.02	0	0	ppt	Ν	Rtmoff/leachi.ng from soil fumigant used on soybeans, cotton, pineap_ples, and orchards.
Dinoseb	2022	<0.02	<0.02	7	7	ppb	Ν	Runoff from herbicide used on soybeans and vegetables.
Endrin	2024	<0.01	< 0.01	2	2	ppb	Ν	Residue of banned insecticide.
Ethylene dibromide	2022	<0.01	<0.01	0	50	ppt	Ν	Discharge from petroleum refineries.
Heptachlor	2024	<0.04	< 0.04	0	400	ppt	N	Residue of banned terrniticide.
Heptachlor epoxidE	2024	<0.02	< 0.02	0	200	ppt	N	Breakdown ofheptachlor.
Hexachlorobenzene	2024	<0.1	< 0.1	0	1	ppb	N	Dischargefrotn metal refineries and agricultural chemical factories.

Hexachlorocyclopentadi 1c ne	2024	<0.1	< 0.1	50	SO	ppb	Ν	Discharge from chemical factories.
Lindane	2024	<0.02	< 0.02	200	200	ppt	Ν	Runoff/leachingfrom insecticide used on cattle, Jumber, gardens.
Methoxyclilor	2024	<0.1	< 0.1	40	40	ppb	Ν	Runoff/JeachIng from insecticide used on fruits, vegetables, alfalfa, livestock.
Oxamyl [Vydate]	2022	2.0	2.0-2.0	200	200	ppb	Ν	Runoff/leachingfrom insecticide used on apples, _potatoes and tomatoes.
Pentachlorophenol	2022	<0.04	< 0.04	0	1	ppb	Ν	Discharge from wood preserving factories.
Picloram	2022	0.1	0.1-0.1	500	500	ppb	Ν	Herbicide runoff.
Simazine	2024	<0.07	< 0.07	4	4	ppb	Ν	Herbicide runoff.
Toxaphene	2024	<1.0	<1.0	0	3	ppb	Ν	Runoff/leaching from insecticide used on cotton and cattle.
Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
1,1,1-Trichloroethane	2024	<0.5	< 0.5	200	200	ppb	Ν	Discharge from metal degreasing sites and other factories.
1,1,2-Trichloroethane	2024	<0.5	< 0.5	3	5	ppb	Ν	Discharge from industrial chemical factories.
1,1-Dichloroethylene	2024	<0.5	< 0.5	7	7	ppb	Ν	Discharge from industrial chemical factories.
1,2,4- Trichlorobenzene	2024	<0.5	<0.5	70	70	ppb	Ν	Discharge from textile-finishing factories.
1,2-Dicliloroethane	2024	<0.5	< 0.5	0	5	ppb	Ν	Discharge from industrial chemical factories.

1,2-Dichloropropane	2024	<0.5	< 0.5	0	5	ppb	Ν	Discharge from industrial chemical factories.
Benzene	2024	<0.5	< 0.5	0	5	ppb	Ν	Discharge from factories; Leaching from gas storage tanks and landfills.
Carbon Tetrachloride	2024	<0.5	< 0.5	0	5	ppb	Ν	Discharge from chemical plants and other industrial activities.
Chlorobenzene	2024	<0.5	<0.5	100	100	ppb	Ν	Discharge from chemical and agricultural chemical factories.
Dichloromethane	2024	<0.5	< 0.5	0	5	ppb	Ν	Discharge from pharmaceutical and chemical factories.
Ethylbenzene	2024	<0.5	< 0.5	700	700	ppb	Ν	Discharge from petroleum refineries.
Styrene	2024	<0.5	<0.5	100	100	ppb	Ν	Discharge from rubber and plastic factories; Leaching from landfills.
Tetrachloroethylene	2024	<0.5	<0.5	0	5	ppb	Ν	Discharge from factories and dry cleaners.
Toluene	2024	<0.5	< 0.5	1	1	ppm	Ν	Discharge from petroleum factories.
Trichloroethylene	2024	<0.5	< 0.5	0	5	ppb	Ν	Discharge from metal degreasing sites and other factories.
Vinyl Chloride	2024	<0.5	< 0.5	0	2	ppb	N	Leaching from PVC piping; Discharge from plastics factories.
Xylenes	2024	<0.5	< 0.5	10	10	ppm	N	Discharge from petr-0leum factories; Discharge from chemical factories.
cis-1,2- Dichloroethylene	2024	<0.5	< 0.5	70	70	ppb	N	Discharge from industrial chemical factories.
o-Dichlorohenzene	2024	<0.5	< 0.5	600	600	ppb	N	Discharge from industrial chemical factories.

7 *

p-Dicblorobenzene	2024	<0.5	<0.5	75	75	ppb	Ν	Discharge from industrial chemical factories.
trans-1,2- Dicholoroethylene	2024	<0.5	<0.5	100	100	ppb	Ν	Discharge from industrial chemical factories.

Turbidity

2024	Limit (Treatment Technique)	Level Detected	Violation	Likely Source of Contamination
Highest singl.e measurement	1 NTU	0.052 NTU	Ν	Soil runoff.
Lowest monthly% meeting limit	0.3 NTU	100%	Ν	Soil runoff.

BROWN COUNTY WID NO.1-CCR DATA- DETECTED ANALVTES

Secondary and Other Constituents Not Regulated

(No associated adverse health effects)

YEAR	CONSTITUENT	AVERAGE LEVEL	SECONDARY LIMIT	UNIT OF MEASURE	SOURCE OF CONSTITUENT
2024	Bicarbonate	139	NA	ppm	Corrosion of carbonate rocks such as
2024	Chloride	65	300	ppm	Abundant naturally occuring element; used In water purification; byproduct of oil field activity.
2024	PH	8.1	7.0	units	Measure of corrosivity of water.
2024	Sulfate	32	300	ppm	Naturally occurring; common industrial byproduct; byproduct of oil field activity.
2024	Total Alkalinity as CaCO3	114	NA	ppm	Naturally occurring soluble mineral salts.
2024	Total Dissolved Solids	266	1000	ppm	Total dissolved mineral constituents in water.

TURBIDITY

Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for biological growth.

Turbidity may indicate the prsence of disease-causing organisms. These organisims include bacteria, virus and parasites

that can cause symptoms such as nausea, cramps, diarrhea and associated headaches.

Year	Constituent	Highest Single	Lowest Monthly	Turbidity	Unit of	Source of Constituent
		Measurement	%of Samples Meeting Limits	Limits (Monthly)	Measure	
2024	Turbidity	0.052	100.00%	95%<0.3	NTU	Soil Runoff.

BROWN COUNTY WID NO.1- CCR DATA- DETECTED ANALYTES

Inorg	1						
		Highest level at	Range of			Unit of	
VEAR	CONSTITUENT	any Sampling	Detected Levels	MCI	MCI G	Measure	Source of Constituent
TLAK	CONSTITUENT	point		MOL	MOLO		
							Discharge of drilling waste;
2024	Barian	0.124	0 124 0 124	2	2		discharge from metal refineries;
2024	Banum	0.134	0.134-0.134	2	Z	ppm	Erosion of natural deposits.
							Erosion of natural deposits;
							Water additive which
							promotes strong teeth;
2024	Fluoride	0.21	0.21.0.21	4	4	ppm	Discharge from fertilizer and
							aluminium factories.
							Runoff from fertilizer use; Leaching from
2024		0.18	0 18- 018	10	10	nnm	septic tanks, sewage;
2024	Nitrate	0.10	0.10010	10	10	ррш	Erosion of natural deposits.
							Discharge from petroleum and
2024		<0.0030	<0.0030.<0.0030	50	50		metal refineries; Erosion of
2021	Selenium	-0.0050	-0.0050 -0.0050	50	50	ppb	natural deposits;
							Discharge from mines.
							Erosion of natural deposites;
2024	Sodium	31.1	31.1-31.1	NA	Na		By-products of oil field activity.
	oodidiii					ppm	
	Gross Beta						Decay of natural and man-made
2023	Emitters	8.2	8.2-8.2	50	0	pci/1	deposits.
					NA: NO	T APPLICABLE	-NOT REGULATED. SPECIAL MONITORING REGUIREMENTS.
OR	GANICS						
DISENEECTIC		NOT TESTED FOR O	R NOT DETECTED				
NREGULATE	D CONTAMINATE:	NOT TESTED FOR C	OR NOT DETECTED				
Year		Constituent	Average of	fall	Range of	Detected	Reason for Monitoring
			Sampling Point	s In ppb	Levels	In ppb	
							Unregulated contaminants monitoring helps
2024			11.1		1	1.1	EPA to determine when certain contaminants
2021		Chloroform	11.1				occur and whether it needs to regulate those
							contaminants.
							·····

				Unregulated contaminants monitoring helps
2024	Bromoform	3.7	3.7	EPA to determine when certain contaminants
				occur and whether It needs to regulate those
				contaminants.
				Unregulated contaminants monitoring helps
2024	Bromodichloromethane	13.1	13.1	EPA to determine when certain contaminants
				occur and whether it needs to regulate those
				contaminants.
				Unregulated contaminants monitoring helps
2024	Dibromochloromethane	12.7	12.7	EPA to determine when certain contaminants
				occur and whether it needs to regulate those
				contaminants.
				Unregulated contaminants monitoring helps
2024	DichloraaceticAcid	12.1	12.1	EPA to determine when certain contaminants
				occur and whether it needs to regulate those
				contaminants.
				Unregulated contaminants monitoring helps
2024		4.9	4.9	EPA to determine when certain contaminants
	Tricioroacetic Acid			occur and whether it needs to regulate those
				contaminants.
				Unregulated contaminants monitoring helps
2024	Dibromogostia Asid	5.8	5.8	EPA to determine when certain contaminants
	Dibiomoacetic Acid			occur and whether it needs to regulate those
				contaminants.
				Unregulated contaminants monitoring helps
2024		,1.0	□1.0	EPA to determine when certain contaminants
	Monobromoacetic Acid			occur and whether it needs to regulate those
				contaminants.
250014	page	23	2024 CCR Reporting	g Form